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Abstract 

 In this paper two evidences are added to the existing in the literature that the 
Riemann Hypothesis (RH) is true.  
The first one shown that one approximated equation to the functional equation 
of the Riemann Zeta Function has probably all its non trivial zeros in the 
critical line ℜ(s)=1/2 . 
A second evidence and more important, is obtained from expanding in a 
Taylor Series the functional equation of the Riemann Zeta function expressed 
as a Fourier Transform. This evidence, as the word means, is not a rigorous 
mathematical proof but perhaps could be a way to prove RH . 
  
 
 

               
 

1. Introduction 

 
An introduction to the Zeta Riemann Function and to the Riemann Hypothesis can be 
found in the references [1]-[6] and [9]. 

The Riemann Zeta Function for ℜ(s) > 1 is defined as: 
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Riemann proved that ζ(s) has an analytic continuation to the whole complex plane apart 
from a simple pole at s =1. 

ζ(s) has an  analytic continuation in the critical region  0 <ℜ(s) < 1   and is defined as : 
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where  η(s) is the Eta Function of Dirichlet given by: 
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Riemann proved also that this Zeta function verifies also an amazing functional 
equation, which in its symmetric form is given by 
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where Γ(s) is the Gamma-function. 

The above functional equation states that if a complex number s is a zero of ξ(s)  then it 
is also a zero the complex number 1-s.  

The Riemann Zeta function is connected with the prime numbers which can be 
considered as the “atoms” of integer numbers because the fundamental theorem of 
arithmetic states that every integer can be factored into primes in a unique way. 

This connection, valid for ℜ(s) >1,   is given by the equation 
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 where the infinite product (called the Euler Product) is over all prime numbers. 

 

The Riemann Hypothesis states that all non trivial zeros ( trivial zeros are the negative 
even integers: -2,-4.-6….) of ξ(s) satisfy ℜ(s) =1/2. 

That is, the Riemann Hypothesis establish that all the non trivial (complex) zeros of the 
Riemann Zeta Function lie in the critical line ℜ[s]=1/2; then if s is a complex number 
that verifies s =σ + i t then all the zeros of the Riemann Zeta Function correspond to 
points of the complex line with σ=1/2 for the different values of  t .  

Riemann proved that all possible non trivial zeros of the Riemann Zeta Function lie in 
the critical region 0 < σ < 1.  

Most of mathematicians believe that the Riemann Hypothesis is true, but although exist   
numerous attempts to prove it since his formulation [10] any proof has been admitted 
for the scientific community. 

 
As pointed out by Brian Conrey [9] there are some evidence to believe that the Riemann 
Hypothesis is true: 

 
a) Billions of zeros verify the Riemann Hypothesis. Work of van de Lune, 

Sebastian Wedeniswski and Andrew Odlyzko have proved that the first 
100 billions of zeros are on the critical line and  also  millions of zeros 
near numbers 1020, 1021 and 1022 agree with the Riemann Hypothesis. 
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b) Almost all of the zeros are very near the 1/2 –line. In fact, it has been 
proved that more than 99 percent of zeros s = σ + it satisfy 

tlog/82/1 ≤−σ  

 
c) It has been proved that a proportion of zeros are on the critical line. 

Selberg got a positive  proportion, and N.Levison [7] showed at least1/3; 
that proportion has been improved by B.Conrey [8] to 40 percent. Also 
Riemann Hypothesis (RH) implies that all zeros of all derivatives of ξ(s) 

are on the 1/2 –line.It has been shown that more that 99 percent of the 
zeros of the third derivative  ξ´´´

(s) are on the 1/2-line. 
 

 
d) Although the primes are distributed apparently in a random way  they   

hide a symmetry related to the Riemann Zeta function and expressed by 
the Euler product of  equation (1e). If RH were false, there would be some 
strange irregularities in the distribution of primes; the first zero off the line 
would be a very important constant, and that seems unlike. 

 
   

In this paper is presented two more arguments to believe that the RH is true. They are 
based on the Fourier transform of the functional equation of the Riemann Zeta function 
 
 
2. First Evidence: An approximated  Fourier Transform function to the functional 

equation of Riemann Zeta Function with only real zeros 

  
Let )2/1()( itt +=Ξ ξ . It is know ( see Titchmarsh [5] chapter 10) that  
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Φ(x) is a even function and Ξ(t) is also an even function and is real for real t. 
 
The RH is true if and only if the Fourier transform Ξ(t) has only real zeros. 
 
Pólya [11] and D.Cardon [12] have studied the reality of zeros of various Fourier 
transforms. One idea to prove the RH is systematically study classes of reasonable 
functions whose Fourier transforms have all real zeros and then try to prove that Ξ(t) is 
in the class. 
 
A first approximation of Φ(x)  is given by [5] 
 
                           ( ) ( )( ) ( )( )xxxx 2cosh2exp2/5cosh32/9cosh2)(0 ππ −−=Φ      (2c) 

The Fourier transform ( equation (2a)) of Φ0(x) has all zeros real . 
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Further de Bruijn, Newman, D.Hejhal and others have investigated the ideas of Pólya. 
Hejhal (1990) has shown that almost all of the zeros of the Fourier transform of any 
partial sum of  Φ(x) are real, so this finding is also an evidence of the truth of the RH. 
 
This paper are related with the above investigations and begins defining the function 
Φ1(x) , constructed looking at the reference function Φ0(x), and given by 
  

                ( ) ( )( )xxx 2cosh2expcosh)( 211 απαβ −=Φ                                   (2d) 

where β, α1 and α2  are parameters obtained from a fit of the function Φ1(x) to the 
function Φ(x) given by equation (2b). The fit is performed using a non linear regression 
with the Levenverg- Marquardt algorithm and is shown in Figure 1. The results for the 
parameters obtained from the fit are in the following Table I. 
 

         Φ1(x) 

α1     2.3025  ±  0.0004 
α2     1.9545  ±  0.00006 
β 239.1811  ±  0.0013 

 
                                               Table I 
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Figure 1. The filled circles represent Φ(x) given by equation (2b) calculated using 100 

terms in the series.  The blue line represents Φ0(x) given by the equation (2c). Φ1(x) 
given by the equation (2d), and using the parameters of Table I,   is  represented by the 

red  line. The non linear fit was obtained from 1600 points equally spaced between x=-1 

and x=1 of Φ(x) calculated using  100 terms in the  series. The reduced chi square of 

the fit was 9.26.10
-10

 for  Φ1(x) . 
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As can be seen in Figure 1 the fit are very good and the functions Φ1(x) presents a high 
approximation to the function Φ(x) for lower values of x. However, as can be seen in 
Figure 2 , at greater absolute values of  x, Φ0(x) is more approximate to Φ(x) than Φ1(x) 
to Φ(x).  
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Figure 2. The filled circles correspond to ln(Φ(x)), the blue line to ln(Φ0(x)) and the red 
line to ln(Φ1(x)). 
 
In Figure 2 were not represented negative values of x because the computer calculations 
give, for x< -1.2 , results that indicate Φ(x) in not an even function( are obtained also 
negative random values). The cause is probably the lower precision of the computer 
calculations ( double precision is not enough) (If the calculations were correct the 
functional equation of the Riemann Zeta Function will be erroneous) 
 
 
In the Figure 3 are represented Ξ(t),  Ξ0(t) and Ξ1(t). This last two function correspond 
to change Φ(x) in equation (2a) by Φ0(x) and  Φ1(x), respectively. 
 Since Φ(x), Φ0(x) and Φ1(x) are even functions the equation (2a), for real t,  can be also 
expressed as 
 
 

                                   ∫
∞

∞−

Φ=Ξ dxtxxt )cos()()(                                                      (2e)         

 
The integral was calculated using the Simpson Method of integral calculation with the 
appropriate values the integration interval. The calculations were performed for values 
of t from 0 to 37.5 so can be observed the first few zeros of the Riemann Zeta Function. 
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Figure 3. The black line correspond to Ξ(t); the blue line to Ξ0(t) and the red line to 

Ξ1(t). The filled circles represent the Zeros of the Riemann Zeta function found in the 

literature. The integrals were calculated using the Simpson Method choosing 4000 

points of integration in the interval (-2,2).( As the values of t increases it is  necessary 

choose more points of integration to obtain precision in the results) The graphic is 

scaled with the function exp(0.7t) since Ξ(t) decreases exponentially with t. 

 
 
 
From the figure 3 one can deduce that in the calculation of the integral of equation (2e) 
the greater values of x are important when t increases. For lower values of t only the 
values of Φ(x) until about   x=± 1 are important. This can be corroborated in Figures 1 
and 3 because in the interval (-1,1) Φ(x) and Φ1(x) are approximate equals and Ξ(t) and 
Ξ1(t) are practically coincident for lower values of t ( less than 15) and the difference 
between them increases with t. As can be seen also in the Figure 3,  Ξ0(t) is less 
approximate than Ξ1(t) to Ξ(t) for lower values of t. One can also predict, take into 
account the results of Figure 2, that if t increases then Ξ0(t) is more approximated  to 
Ξ(t). 
 
 To deduce if the zeros of Ξ1(t) are real one can use one theorem due to de Bruijn [9]. 
 
  Theorem (de Bruijn):  Let f(x) be an even non constant entire function of x such that  

f(x) ≥ 0 for real x and )()exp()´( 2
xgxxf γ= , where γ ≥ 0 and g(x) is an entire function 

of genus ≤ 1 with purely imaginary zeros only. Then ( )∫
∞

∞−
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itx)(exp)( has real 

zeros only. 
 
 



 7 

 Using the above theorem for  Ξ1(t) then exp(-f(x))=Φ1(x) (Since Φ1(x) is an even non 
constant function then f(x) is also an even non constant function. Moreover 0 < Φ1(x) 
<1 for real x, so f(x) ≥ 0 for real x. This implies that f(x) verifies the conditions of the de 
Bruijn Theorem). If one considers also that γ = 0 then   
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       From equation (2d) and (2f) one can deduce that 
 
                                   ( ) ( ){ }xxxg 211 sinh2tanh)( απαα −−=                           (2g)    

 
   To prove that g(x) has only purely imaginary zeros as requires the above theorem then 
if  x = a + ib one arrives that is necessary that the two following equations will be 
satisfied only when a=0 

 

 

( ) ( ) ( ) ( ) ( ) ( ){ −−=+= bababaibaxg r 22112111 cossinhcoscosh2cossinh)( ααααπαααα         

                                                             ( ) ( ) ( ) ( )} 0sincoshsinsinh 2211 =baba αααα               

 
                                                                                                                           (2h 1) 

( ) ( ) ( ) ( ) ( ) ( ){ +−=+= bababaibaxg i 22112111 cossinhsinsinh2sincosh)( ααααπαααα  

                                                             ( ) ( ) ( ) ( )} 0sincoshcoscosh 2211 =baba αααα    

                                                                                                                             (2h 2)   
 
 
Since, when a = 0, gr(b)=0 for all b and accordingly the zeros of gi(x) verify the 
equation 
 
 
                                     ( ) ( ) ( ) 0sincos2sin)( 21211 =−= bbbbg i ααπααα             (2h 3) 

 
 
The zeros of gr(x) and gi(x) do not depend on the value of a so is only necessary prove 
for a particular value of a that the zeros of g(x) are only purely imaginary zeros.. In the 
Figure 4, which is the graph of the above two functions for a=0.1, is observed for 
positive values of b (It is not necessary represent the negative values because the 
graphic is symmetric) that the zeros of gr(x) and gi(x) are not the same in the scale 
represented in the figure. It seems that for all values of b the zeros are purely imaginary 
zeros, verifying then the Theorem of de Bruijn if g(x), given by equation (2g), is an 
entire function of genus ≤ 1. 
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  Figure 4. The red line represents gr(x) for a=0.1 and the blue line correspond to gi(x) 

also for a=0.1, given by equations (2h 1) and (2h 2), respectively. 

 

 

In summary,  the function Ξ0(t) has zeros only for real values of  t and  probably occurs 
the same for Ξ1(t). Both functions verify the symmetric equation which satisfy the 
functional equation of the Riemann Zeta function, that is , Ξ(s)= Ξ(1-s), Ξ0(s)= Ξ0(1-s) 
and Ξ1(s)= Ξ1(1-s). The zeros of the three functions are quasi random and have similar 
values of t. If the zeros of the two approximated functions (one function that is 
approximated for lower values of t and the other for higher values of t) are real then 
why should not be real the zeros of Ξ(t) ? It seems that there is no reason for exist 
complex zeros of Ξ(t) . If this is not the case then the Riemann Zeta function will be a 
very special function and the reason could be the relation between the Riemann Zeta 
function and the prime numbers expressed in the Euler product of  equation (1e) which 
relation do not present the other two functions. 
 
 
 
 
3. Second Evidence. The functional equation of the Riemann Zeta Function 

expressed as a Fourier Transform and expanded in a Taylor Series. 

 

 
       If one considers that s=1/2+it =σ + iT   then  t in the equation )2/1()( itt +=Ξ ξ  is 

given by  t=T-i(σ -1/2) and the equation (2a) is transformed into 
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Now if p=σ -1/2+iT  the above equation read as 
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The integrand of the equation (3b) can be transformed in a even function resulting 
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The above integral can be simplified into 
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On the other hand Φ(x) of equation (2b) can be expressed also as: 
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Using the  equation (3f) into the integral of equation (3d) then  results 
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     The equation (3g), if 
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where 
 
 

                                      ( ) ( )2221 2/122/9)( −−++= σTjsh j                                  (3h3)  

 

                                      ( ) ( )2222 2/122/5)( −−++= σTjsh j                                  (3h4) 

 
                                       ( )Tsw 2/12)( −= σ                                                               (3h5) 

   
 
 The Riemann Hypothesis is true if Ξ(s) is zero only when σ = 1/2. 
When σ = 1/2  Ξ(s) is real since w(s)=0 and accordingly Ξi(s)=0. 
 
One can observe from equations (3h)  the terms of the series  Ξr(s) and Ξi(s)/w(s) are 
identical except in that the first one contains the terms hj

1 and hj
2 in the numerator of the 

fractions of these equations in place of 1 for the second one. Then it seems unlikely that 
for a given value of T and 2/1≠σ both series converges to the same value. This would 
imply that will not exist any value of T and 2/1≠σ  for which   Ξr(s) and Ξi(s) are both 
zero, so this could be an evidence that the RH is true. 
 
 Another evidence, more justified, that the RH is true results from consider that as T   

increases then the term ( )22/1−σ  in equations (3h3) and (3h4) is less important with 

respect to T2 and also w(s) is less important than hj
1
 and hj

2, so at very high values of T  
Ξr(s) and Ξi(s)/w(s) are practically independent of σ. This implies that the zeros Ξr(s) 
and Ξi(s) are also practically independent of σ at high values of T and accordingly if the 
RH were not true, that is, if would exist a zero of Ξ(s) for a given value of T and 

2/1≠σ , then will exist infinite approximated zeros for that value of T and for all σ∈ 
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(0,1). Since it is known almost all of the zeros are very near the 1/2 –line (more than 99 
percent of zeros satisfy Tlog/82/1 ≤−σ ) this implies also one evidence that the RH 

is true. 
The above evidences let the possibility that the RH is false, that is, as the words means, 
is probably that RH is true but they are no proofs. 
 
 However the last argument perhaps could be considered, not as a rigorous mathematical 
proof, but as an empirical proof when applied to values of σ >1, with the condition that 
σ <<T ,   because it is known that the Riemann Zeta function and its functional 
equation have no zeros when ℜ(s)>1. According to the property of that Ξr(s) and 
Ξi(s)/w(s) are practically independent of σ so if would exist a zero of Ξ(s) for a given 
value of T and 2/1≠σ  (in the critical strip σ∈ (0,1)) , then will exist infinite 
approximated zeros for that value of T and for all σ >1 ( with the condition that σ <<T  
) and it seems that this is not possible. The condition of  σ <<T   for this argument to be 
valid is justified because it is known that   at least for  T< 1011  the RH is true.  
 
Ξr(s) and Ξi(s) were calculated using equation (3a) instead of make use of equation (3h) 
because the  convergence is slow in the series ( for a moderate number of terms of the 
two summands in the series this series  did not converge).The equation (3a)  implies that 
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                                          ( )
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The results are shown in Figures 5 for different values of σ and T.  
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 Figure 5a. Ξr(s) as function of T for σ = 0.6, 0.7, 0.8 and 0.9. 
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Figure 5b.  Ξi(s) as function of T for σ = 0.6, 0.7, 0.8 and 0.9.   
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Figure 5c. Ξi(s)/w(s) as function of T for σ = 0.6, 0.7, 0.8 and 0.9. 

 
Figures 5. Ξ(s) as function of T for the values of σ = 0.6, 0.7, 0.8 and 0.9. The filled 

circles represent the Zeros of the Riemann Zeta function found in the literature. The 

integrals were calculated using the Simpson Method choosing 4000 points of 

integration in the interval (-2,2).( As the values of T increases it is  necessary to choose 

more points of integration to obtain precision in the results, so the results are not very 

accurate for the higher values of T) The graphic is scaled with the function exp(0.7T) 
since Ξ(T) decreases exponentially with T. 
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The mentioned predictions of equations (3h) are corroborated in the results of the 
Figures 5.  Ξr(s) and Ξi(s)/w(s) are practically independent of σ ( The graphics for 
different values of  σ  are nearly superposed) so the zeros are also almost independent of 
σ. These calculations seem to be correct also because the zeros of Ξr(s) are 
approximately equal to the zeros of the Riemann Zeta function found in the literature. 
Also the zeros Ξi(s), for 2/1≠σ , are different from the zeros of Ξr(s). Then the 
reasoning of the second evidence that the RH is true seems to be justified and this could 
be   not   a simple evidence but perhaps a way to prove the Riemann Hypothesis. 
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